Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Chinese Acupuncture & Moxibustion ; (12): 721-726, 2023.
Article in Chinese | WPRIM | ID: wpr-980785

ABSTRACT

A multifunctional moxibustion treatment machine is designed and developed to assist the heat-sensitive moxibustion therapy. Through the motion control of the stepping motor by programmable logic controller (PLC), the automatic control is obtained for the acupoint detection of heat-sensitive moxibustion therapy and the manual operation of moxibustion. The skin temperature is monitored in real-time, using infrared non-contact temperature measurement technology. Based on the deviation of the temperature set value and the monitoring one, the distance between the moxibustion device and the exerted region is adjusted automatically by PLC so that the temperature is controlled practically. The multifunctional moxibustion treatment machine based on the heat-sensitive moxibustion therapy is capable of the operation control of mild moxibustion, circling moxibustion, sparrow-pecking moxibustion and along-meridian moxibustion techniques, as well as real-time monitoring of skin temperature. The temperature change curve of this machine is coincident with that obtained by the manual operation of heat-sensitive moxibustion. This multifunctional moxibustion treatment machine assists the delivery of heat-sensitive moxibustion therapy and it is satisfactory in temperature control and precise in operation.


Subject(s)
Hot Temperature , Moxibustion , Pain Management , Acupuncture Points , Meridians
2.
Chinese Medical Journal ; (24): 445-451, 2017.
Article in English | WPRIM | ID: wpr-303132

ABSTRACT

<p><b>BACKGROUND</b>Morphological changes of the vasculature system in patients with myopia have been observed by Doppler ultrasound and fundus fluorescein angiography (FFA); however, these studies have limitations. Doppler ultrasound provides low-resolution images which are mainly obtained from visualized large vessels, and FFA is an invasive examination. Optic coherence tomography (OCT) angiography is a noninvasive, high-resolution measurement for vascular density. The purpose of this study was to investigate the change of vascular density in myopic eyes using OCT angiography.</p><p><b>METHODS</b>This cross-sectional study includes a total of 91 eyes from 47 participants including control, moderate, and high myopia that were evaluated by OCT angiography. Patients with myopia were recruited from the Refractive Department, Shenzhen Aier Eye Hospital, from August 5, 2015 to April 1, 2016. Emmetropic eyes were from healthy volunteers. The vascular density at macula and optic disc regions, ganglion cell complex (GCC) thickness, and retinal nerve fiber layer (RNFL) thickness were measured. Their relationships with axial length (AL) and refractive error were analyzed. One-way analysis of variance (ANOVA), Pearson's correlation, and generalized estimating equation were used for statistical analysis.</p><p><b>RESULTS</b>Both superficial and deep macular vascular density were highest in control (25.64% ± 3.76% and 37.12% ± 3.66%, respectively), then in moderate myopia (21.15% ± 5.33% and 35.35% ± 5.50%, respectively), and lowest in high myopia group (19.64% ± 3.87% and 32.81% ± 6.29%, respectively) (F = 13.74 and 4.57, respectively; both P < 0.001). Both superficial (β = -0.850 and 0.460, respectively) and deep (β = -0.766 and 0.396, respectively) macular vascular density were associated with AL and spherical equivalent (all P < 0.001). Superficial macular vascular density was associated with GCC thickness (β = 0.244, P = 0.040), independent of spherical equivalent. The vascular density in optic disc region had no difference among the three groups, and it was not associated with AL, spherical equivalent, or RNFL thickness.</p><p><b>CONCLUSION</b>Our results suggested that with the increase of myopia, the vascular density decreased in macular region, but not in optic disc region.</p>


Subject(s)
Adult , Female , Humans , Male , Middle Aged , Young Adult , Cross-Sectional Studies , Eye , Fluorescein Angiography , Macula Lutea , Pathology , Myopia , Pathology , Optic Disk , Pathology , Prospective Studies , Retina , Pathology , Retinal Ganglion Cells , Pathology , Tomography, Optical Coherence
3.
National Journal of Andrology ; (12): 201-206, 2014.
Article in Chinese | WPRIM | ID: wpr-309735

ABSTRACT

<p><b>OBJECTIVE</b>To explore the impact of microwave radiation on GC-2spd cells.</p><p><b>METHODS</b>We exposed cultured GC-2spd cells to microwave radiation at the average power densities of 0, 10 and 30 mW/cm2 for 15 minutes and, from I to 24 hours after the exposure, we observed the changes in cell proliferation, histology and ultrastructure, cell apoptosis, and cAMP content by MTIT, light microscopy, electron microscopy, flow cytometry and ELISA.</p><p><b>RESULTS</b>Compared with the control group, the GC-2spd cells showed a significant decrease in proliferation ability at 1 -24 hours after 10 and 30 mW/cm2 microwave radiation, except at 12 hours after 30 mW/cm2 radiation (P <0.05 or P <0.01), with reduced length and number of cell enation and increased intra cytoplasm vacuoles. The rate of cell apoptosis (%) was significantly increased in the 10 and 30 mW/cm2 groups at 6 hours (4.56 +/- 2.09 vs 14.59 +/- 1.09 and 8.48 +/- 1.73, P <0.05 or P <0.01) , with agglutination and margin translocation of chromatins and obvious dilation of endo cytoplasmic reticula. The cAMP content (nmol/g) in the GC-2spd cells was remarkably reduced in the 10 and 30 mW/cm2 groups at 6 and 24 hours (2.77 +/-0.24 vs 1.65+/- 0. 17 and 1.96+/-0.10, 3.02 +/-0.47 vs 2.13 +/-0.33 and 1.69 +/-0.27, P <0.05 or P <0.01).</p><p><b>CONCLUSION</b>Microwave radiation at 10 and 30 mW/cm2 may cause injury to GC-2spd cells, which is manifested by decreased content of intracellular cAMP, reduced activity of cell proliferation, and increased rate of cell apoptosis.</p>


Subject(s)
Animals , Male , Mice , Apoptosis , Radiation Effects , Cell Line , Radiation Effects , Cell Proliferation , Radiation Effects , Microwaves , Spermatocytes , Radiation Effects
4.
Medical Journal of Chinese People's Liberation Army ; (12): 322-325, 2012.
Article in Chinese | WPRIM | ID: wpr-850523

ABSTRACT

Objective To investigate the effects and ascertain the significance of microwave radiation on the expression of phosphorylated cyclic adenosine monophosphate (cAMP)-response element-binding protein (pCREB), cAMP-responsive element modulator (CREM), and CREB-binding protein (CBP) in the testicular tissue of rats. Methods Thirty male Wistar rats were randomly divided into control group (n=5) and radiation group (n=25). Five rats in the radiation group were sacrificed at 6h, 1, 3, 7, and 14d, respectively, after exposure to microwave radiation for 5min, with an average power density of 30mW/cm2. Rats in the control group were sacrificed within 1d without receiving microwave radiation. Expressions and dynamic changes in pCREB, CREM, and CBP in the testicular tissues were examined by immunohistochemistry and Western blotting. Results pCREB, CREM, and CBP were mainly expressed in the sperm nuclei of the seminiferous tubule in the rat testis. pCREB and CBP protein expressions were downregulated from 6h to14d (except for pCREB at 1d) after exposure to microwave radiation (P<0.05 or P<0.01). The expression of CREM was also weakened significantly from 6h to 7d after radiation (P<0.05 or P<0.01). Conclusion The downregulation of pCREB, CREM, and CBP expression may play an important role in the injury of spermatogenic cells caused by microwave radiation.

5.
National Journal of Andrology ; (12): 738-741, 2012.
Article in Chinese | WPRIM | ID: wpr-286448

ABSTRACT

More and more evidence from over 50 years of researches on the effects of electromagnetic radiation on male reproduction show that a certain dose of electromagnetic radiation obviously damages male reproduction, particularly the structure and function of spermatogenic cells. The mechanisms of the injury may be associated with energy dysmetabolism, lipid peroxidation, abnormal expressions of apoptosis-related genes and proteins, and DNA damage.


Subject(s)
Animals , Male , Apoptosis Regulatory Proteins , Metabolism , DNA Damage , Radiation Effects , Dose-Response Relationship, Radiation , Electromagnetic Radiation , Energy Metabolism , Radiation Effects , Genitalia, Male , Radiation Effects , Lipid Peroxidation , Radiation Effects , Radiation, Ionizing , Reproduction , Radiation Effects
6.
National Journal of Andrology ; (12): 214-218, 2011.
Article in Chinese | WPRIM | ID: wpr-266188

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the effect of long-term microwave radiation on male reproduction in rats.</p><p><b>METHODS</b>A total of 100 male Wistar rats were exposed to microwave radiation with average power density of 0, 2.5, 5 and 10 mW/cm2 for 4 weeks, 5 times a week and 6 minutes per time. Changes in serum testosterone, testicular index, histology and ultrastructure, and the percentage of teratospermia in the epididymis were observed dynamically at 6 h, 7 d, 14 d, 28 d and 60 d after the exposure.</p><p><b>RESULTS</b>There was a significant decrease in serum testosterone concentration at 28 d after microwave radiation at 2.5, 5 and 10 mW/cm2 ([10.20 +/- 4.31] ng/ml, [5.56 +/- 3.47] ng/ml and [7.53 +/- 4.54] ng/ml) and at 60 d at 10 mW/cm2 ( [15.95 +/- 9.54] ng/ml), as compared with the control group ([23.35 +/- 8.06] ng/ml and [31.40 +/- 9.56] ng/ml) (P < 0.05 or P < 0.01). No significant changes were found in the testis index at 6 h -60 d after microwave radiation at the three doses, but different degrees of degeneration, necrosis and shedding of spermatogenic cells, thinning of spermatogenic epithelia, and decrease or deletion of spermatozoa were observed, and more obvious at 28 d and 60 d. Swelling and cavitation of mitochondria in all spermatogenic cells, agglutination and margin translocation of nuclear chromatin in the spermatogonial and Leydig cells were seen at 7 d and 60 d after 5 mW/cm2 microwave radiation. The rate of teratospermia of the epididymis was increased, more obviously at 7 d after 2.5, 5 mW/cm2, 60 d after 5 mW/cm2, and 7 d, 28 d and 60 d after 10 mW/cm2 microwave radiation (P < 0.05 or P < 0.01).</p><p><b>CONCLUSION</b>Long-term microwave radiation may cause injury to male reproduction, which is positively correlated with the radiation dose, and has an obvious late effect.</p>


Subject(s)
Animals , Male , Rats , Dose-Response Relationship, Radiation , Microwaves , Rats, Wistar , Reproduction , Radiation Effects , Sperm Head , Radiation Effects , Testis , Radiation Effects
7.
International Eye Science ; (12): 857-860, 2008.
Article in Chinese | WPRIM | ID: wpr-641593

ABSTRACT

AIM: To test the expression of erythropoietin (Epo) and its receptor EpoR in normal and neovascularized murine corneas induced by alkali burns, and to investigate whether Epo/EpoR is involved in the process of corneal angiogenesis.METHODS: The expression of Epo/EpoR was tested in normal and neovascularized murine corneas induced by alkali burns through immunohistochemistry of corneal frozen sections. Epo cloning, expression, and purification were carried out. Then Epo protein (6μL, 1μg) and control (6μ L of vector control or saline) were injected into the corneal stroma respectively, and the corneas were checked at the 14th day after injection to see whether corneal neovascuarization occurred.RESULTS: Epo/EpoR was expressed in epithelial cells, endothelial cells and stromal cells in normal and neovascularized corneas induced by alkaline burns, and also expressed strongly in neovascularized cornea. They were expressed at the same time in stromal inflammatory cells and new vessels. Corneal neovascularization was induced by Epo intrastromal injection in 5 out of 6 eyes ,but no new vessels were observed in all controls (n = 6) at day 14 after vector control or saline intrastromal injection in normal corneas.CONCLUSION: This paper first reported the expression of Epo and its receptor in normal and neovascularized cornea. Injection of Epo into the corneal stroma may induce the corneal neovascularization. Epo/EpoR is associated with the formation of corneal neovascularization.

8.
Annals of the Academy of Medicine, Singapore ; : 293-297, 2007.
Article in English | WPRIM | ID: wpr-250829

ABSTRACT

<p><b>INTRODUCTION</b>Macular oedema is the main cause of visual impairment following retinal vein occlusion. The purpose of this study was to evaluate the anatomical and functional outcome of pars plana vitrectomy and internal limited membrane (ILM) peeling for macular oedema secondary to retinal vein occlusion.</p><p><b>CLINICAL PICTURE</b>This pilot study is a prospective nonrandomised series of 11 eyes of 11 patients with macular oedema secondary to retinal vein occlusion. The best-corrected visual acuity (BCVA), foveal thickness on optical coherence tomography, fundus fluorescein angiography (FFA) and multifocal electroretinography were evaluated.</p><p><b>TREATMENT AND OUTCOME</b>All 11 patients underwent pars plana vitrectomy with ILM peeling. The mean postoperative follow-up was 13.5 months (range, 1.5 to 24). The mean thickness at the foveal centre decreased from 794 +/- 276 microm preoperatively to 373 +/- 150 microm, 302 +/- 119 microm, 249 +/- 203 microm and 185 +/- 66 microm at 1 week, 1 month, 3 months and the final visit postoperatively, respectively (all P <0.001, paired t- test, compared to preoperative thickness). Postoperative FFA demonstrated markedly reduced leakage in the macular region. At the final visit, BCVA improved 2 lines or more in 72.7% (8/11) of patients and was unchanged in 27.3% (3/11) patients. Complications included cataract in 7 patients and vitreous haemorrhage, recurrence of macular oedema and visual field defect in 1 case each.</p><p><b>CONCLUSION</b>Pars plana vitrectomy and ILM peeling rapidly reduced the macular oedema caused by retinal vein occlusion, with improvement in BCVA.</p>


Subject(s)
Adult , Aged , Female , Humans , Male , Middle Aged , Epiretinal Membrane , Pathology , General Surgery , Macular Edema , General Surgery , Pars Planitis , Pathology , General Surgery , Pilot Projects , Prospective Studies , Retinal Vein Occlusion , Visual Acuity , Vitrectomy
9.
National Journal of Andrology ; (12): 486-495, 2006.
Article in Chinese | WPRIM | ID: wpr-343592

ABSTRACT

<p><b>OBJECTIVE</b>To explore the pathological characteristics and the dynamic change regularity of the testis induced by high power microwave (HPM) radiation.</p><p><b>METHODS</b>One hundred and sixty-five male Wistar rats were exposed to 0, 3, 10, 30 and 100 mW/cm2 HPM radiation for five minutes, and changes of testicular morphology and teratogenic ratio of epididymal spermatozoa were observed through light microscope and electron microscope at 6 h, 1, 3, 7, 14, 28 and 90 d after radiation.</p><p><b>RESULTS</b>Injury of testicular spermatogenic cells in rats might be induced by 3 to approximately 100 mW/cm2 HPM radiation, and the main pathological changes were degeneration, necrosis, shedding of spermatogenic cells, formation of multinuclear giant cells, decrease or loss of sperm and interstitial edema. Injury of spermatogenic cells underwent such phases as death and shedding, cavitation, regeneration and repair, characterized by being focalized, inhomogenous and phased. And the severity of pathological changes of the testis increased with power density. There was only scattered degeneration, necrosis, shedding of spermatogenic cells in the seminiferous tubule one day after 3 mW/cm2 radiation, and the pathological changes six hours after 10 mW/cm2 radiation was similar to those one day after 3 mW/cm2 radiation, but with the formation of multinuclear giant cells, and the above-mentioned pathological changes aggravated from one day to seven days after radiation. There was a significant increase in degeneration, necrosis, shedding of spermatogenic cells, as well as a significant decrease in spermatozoa and focal necrosis in simple seminiferous tubules six hours after 30 and 100 mW/cm2 radiation, and the subsequent changes were similar to those of 10 mW/cm2 radiation. There was a significant increase in teratogenic ratio of epididymal spermatozoa at 3 d, 1 to approximately 7 d, 6 h to approximately 7 d after 3, 10, 30 and 100 mW/cm2 microwave radiation respectively (P < 0.01 or P < 0.05).</p><p><b>CONCLUSION</b>HPM radiation may cause injury of testicular spermatogenic cells in rats, which has a positive correlation to radiation dosage and time.</p>


Subject(s)
Animals , Male , Rats , Dose-Response Relationship, Radiation , Microwaves , Rats, Wistar , Spermatozoa , Pathology , Radiation Effects , Testis , Pathology , Radiation Effects
10.
Chinese Journal of Industrial Hygiene and Occupational Diseases ; (12): 211-214, 2004.
Article in Chinese | WPRIM | ID: wpr-271982

ABSTRACT

<p><b>OBJECTIVE</b>To study the changes of morphology and function in rat hippocampus induced by high power microwave (HPM) radiation.</p><p><b>METHODS</b>Fifty male Wistar rats were radiated by HPM. Then their learning and memory abilities were tested with Y maze and were sacrificed 6 h, 1 d, 3 d and 7 d after radiation. The hippocampus was taken out to study the basic pathologic changes, apoptosis and the expressions of neuron-specific enolase (NSE) and glial fibrillary acidic protein (GFAP) by means of HE staining, Nissel body staining, in situ terminal end labeling and immunohistochemistry.</p><p><b>RESULTS</b>The learning and memory abilities of rats reduced significantly after HPM radiation. HPM also resulted in rarefaction, edema and hemangiectasia of hippocampus, nervous cells degeneration and necrosis, decrease or disappearance of Nissel bodies. The injuries were more serious in field CA4 and dentate gyrus, which showed dose-effect relationship, and were progressively aggravated within 7 days. The apoptosis cells were significantly increased. NSE was increased in neurons. The NSE positive areas were also seen in the interstitial matrix and blood vessels. GFAP was increased in astrocytes, which became shorter and thicker.</p><p><b>CONCLUSION</b>HPM can damage the abilities of learning and memory and results in morphologic changes in hippocampus. The major pathologic changes are degeneration, apoptosis and necrosis of neurons and edema in interstitium. NSE and GFAP play an important role in the pathologic process.</p>


Subject(s)
Animals , Male , Rats , Apoptosis , Radiation Effects , Glial Fibrillary Acidic Protein , Metabolism , Hippocampus , Metabolism , Pathology , Radiation Effects , Learning , Radiation Effects , Memory , Radiation Effects , Microwaves , Phosphopyruvate Hydratase , Metabolism , Rats, Wistar
11.
Chinese Journal of Industrial Hygiene and Occupational Diseases ; (12): 329-331, 2003.
Article in Chinese | WPRIM | ID: wpr-340046

ABSTRACT

<p><b>OBJECTIVE</b>To evaluate the effect of electromagnetic pulse (EMP) irradiation on mice reproduction.</p><p><b>METHODS</b>Female/male Kunming mice, 6 - 8 weeks old, prior to mating, or female after pregnancy were treated with whole body irradiation by 6 x 10(4) V/m electromagnetic pulse (EMP) for five times. The pregnant mice were killed on the 18th days, and teratological markers were analysed.</p><p><b>RESULTS</b>EMP irradiation caused no significant changes in most of female organ weight and organ/body weight ratio. But it caused significant shortening in tail length of live foetus in the female mice before conception (prior to mating) or after pregnancy (P < 0.05), and obvious decrease in male offspring ratio (0.85 +/- 0.09 vs 1.09 +/- 0.17, P < 0.05). The male offspring ratio also significantly decreased (0.76 +/- 0.18 vs 1.09 +/- 0.17, P < 0.01) after male mice irradiated by EMP. The tail length of live foetus was shortened and male offspring sex ratio was increased after both male and female mice were irradiated by EMP. EMP irradiation also caused a significantly higher fetal death rate than normal control (P < 0.05). The embryo absorption rate was increased after irradiation except that was decreased in male mice.</p><p><b>CONCLUSION</b>EMP irradiation has effect on pregnancy and offspring development in both male and female mice before mating and in female mice after pregnancy.</p>


Subject(s)
Animals , Female , Male , Mice , Pregnancy , Fetus , Radiation Effects , Radiation , Reproduction , Radiation Effects
12.
National Journal of Andrology ; (12): 327-330, 2003.
Article in Chinese | WPRIM | ID: wpr-238034

ABSTRACT

<p><b>OBJECTIVE</b>To explore the effect of electromagnetic pulse (EMP) irradiation on structure and function of Leydig cells in mice.</p><p><b>METHODS</b>One hundred and fourteen male Kunming mice were randomly divided into irradiated and control group, the former radiated generally by 8 x 10(3) V/m, 2 x 10(4) V/m and 6 x 10(4) V/m EMP respectively five times within two minutes. Pathological changes of Leydig cells were observed by light and electron microscope. Serum testosterone (T), luteinizing hormone (LH) and estradiol (E2) were measured dynamically by radioimmunoassay at 6 h, 1 d, 3 d, 7 d, 14 d and 28 d after irradiation.</p><p><b>RESULTS</b>Main pathological changes were edema and vacuolation, swelling of cytoplasmic mitochondria, reduce of lipid droplets, pale staining of most of lipid droplets, and partial or complete cavitation of lipid droplets in Leydig cells within 28 days after EMP radiation. Compared with normal controls, serum T decreased in all in different degrees within 28 days, and dropped significantly at 6 h-14 d, 6 h-7 d and 1 d-28 d after 8 x 10(3) V/m, 2 x 10(4) V/m and 6 x 10(4) V/m EMP irradiation(P < 0.05 or P < 0.01). EMP irradiation caused no significant changes in serum LH and E2.</p><p><b>CONCLUSIONS</b>Leydig cells are among those that are the most susceptible to EMP irradiation. EMP irradiation may cause significant injury in structure and function of Leydig cells in mice, whose earlier and continuous effect is bound to affect sexual function and sperm production.</p>


Subject(s)
Animals , Male , Mice , Dose-Response Relationship, Radiation , Electromagnetic Phenomena , Estradiol , Blood , Hormones , Blood , Leydig Cells , Pathology , Radiation Effects , Luteinizing Hormone , Blood , Mice, Inbred Strains , Random Allocation , Testosterone , Blood
SELECTION OF CITATIONS
SEARCH DETAIL